
Clean Architecture & Dependency
Injection in Android

Software Studio 2022

1

Q1. Who is the target audience for this lab?

You want to learn an architecture guideline to better
collaborate with your team. (share work, debug)

You have a basic understanding of Architecture
(data/domain/presentation) and Dependency Injection from

given videos or other resources.

We won't cover much about the interaction between UI and
ViewModels (we will cover it next week)

2

Q2. Why should we learn clean architecture?
Isn't MVVM already the most famous
architecture?

3

A. The purpose of the clean architecture is making the app
scalable . A good architecture comes with several different

aspects:

How easy it is to extend the architecture with new features

How easy it is to test the app

How long does a new team member need to actually
understand what the project is about

4

Q3. I have seen the official tutorial videos. What
else can I expect to learn from this lab?

5

A. This lab will give you a deeper understanding of the

concepts you learnt from the videos. We will guide you through
tracing codes of a small project that implemented with clean

architecture.

6

Last thing before we dive into today's topic

Most of the content in this lab is from this YouTube video (LINK).
If you prefer to learn in English, you could go watch the video

instead. It may be longer but is well explained.

7

https://www.youtube.com/watch?v=8YPXv7xKh2w&t=464s&ab_channel=PhilippLackner

1. Clean Architecture

8

Quick review of the concept of clean
architecture

Clean Architecture

Data Layer (Data Source / Repository)

Domain Layer (Usecase / Entity)

Presentation Layer (ViewModel/UI)

9

Clean Architecture - Data Layer

1. Exposing data and receiving events

2. Source of truth

3. Immutability

4. Threading and error handling

10

class NewsRepository (

 val localNewsDataSource: LocalNewsDataSource,

 val remoteNewsDataSource: RemoteNewsDataSource

) {

 suspend fun fetchNews() : List<Article> {

 try {

 val news = remoteNewsDataSource.fetchNews()

 localNewsDataSource.updateNews(news)

 }.catch (e: RemoteDataSourceNotAvailableException) {

 Log.d("NewsRepository", "Connection failed, using local data source")

 }

 return localNewsDataSource.fetchNews()

 }

}

11

Clean Architecture - Domain Layer

1. Simple

2. Lightweight

3. Immutable

12

class GetLatestNewsWithAuthorsUseCase(

 private val newsRepository: NewsRepository,

 private val authorsRepository: AuthorsRepository,

 private val defaultDispatcher: CoroutineDispatcher = Dispatchers.Default

) {

 suspend operator fun invoke(): List<ArticleWithAuthor> =

 withContext(defaultDispatcher) {

 val news = newsRepository.fetchLatestNews()

 return buildList {

 news.forEach { article ->

 val author = authorsRepository.getAuthor(article.authorId)

 add(ArticleWithAuthor(article, author))

 }

 }

 }

}

13

Clean Architecture - Presentation Layer

1. Define UI state

2. Production of UI state

3. Expose UI state

4. Consume UI state

14

sealed interface HomeUiState {

 val isLoading : Boolean

 val errorMessages: List<Int>

 val searchInput: String

 ...

}

class HomeViewModel(...) : ViewModel() {

 ...

 val uiState: StateFlow<HomeUiState> =

 fun refreshPosts() {

 _uiState.update { it.copy(isLoading = true)}

 viewModelScope.launch {

 val result = postsRepository.getPostsFeed()

 _uiState.update {

 when (result) {

 is Result.Success -> {

 it.copy(postsFeed = result.data, isLoading = false)

 }

 is Result.Error -> {

 val errorMessages = it.errorMessages + R.string.load_error

 it.copy(errorMessages = errorMessages, isLoading = false)

 }

 }

 }

 }

 }

}

15

Steps to trace the code

1. Clone the project from this GitHub Link.

2. Checkout to branch app.

3. Try to trace the code (without actually run the app) and

answer the following questions:

Basic

1. What data are included in a Note?

2. What services does this app provide?

3. Where is the code for "sorting notes"?

4. What user can do to interact with the app on the Main Page?

16

https://github.com/philipplackner/CleanArchitectureNoteApp/tree/app

Advanced

1. Currently the app is using local database for data storage. If
we decide to switch to remote server instead, which parts

should be adjusted and how? (list all)

2. If we want to use fake data instead of using real data source
for testing, which parts should be adjusted and how?

3. If we click the delete button to delete a note but the process
failed (the note is still in database), will the UI show the

note?

17

2. Dependency Injection

2.1. What is dependency injection

2.2. Manual dependency injection

2.3. Dependency injection with Hilt

18

2.1 What is dependency injection

class Car {

 private val engine = Engine()

 fun start() {

 engine.start()

 }

}

fun main(args: Array) {

 val car = Car()

 car.start()

}

19

class Car(private val engine: Engine) {

 fun start() {

 engine.start()

 }

}

fun main(args: Array) {

 val engine = Engine()
 val car = Car(engine)
 car.start()

}

20

2.2 Manual Dependency Injection

Basic

Manage in containers

Manage in application flows

21

Basics of manual DI

class UserRepository(

 private val localDataSource: UserLocalDataSource,

 private val remoteDataSource: UserRemoteDataSource

) { ... }

class UserLocalDataSource { ... }

class UserRemoteDataSource(

 private val loginService: LoginRetrofitService

) { ... }

22

class LoginActivity: Activity() {

 private lateinit var loginViewModel: LoginViewModel

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 // In order to satisfy the dependencies of LoginViewModel, you have to also

 // satisfy the dependencies of all of its dependencies recursively.

 // First, create retrofit which is the dependency of UserRemoteDataSource

 val retrofit = Retrofit.Builder()

 .baseUrl("https://example.com")

 .build()

 .create(LoginService::class.java)

 // Then, satisfy the dependencies of UserRepository

 val remoteDataSource = UserRemoteDataSource(retrofit)

 val localDataSource = UserLocalDataSource()

 // Now you can create an instance of UserRepository that LoginViewModel needs

 val userRepository = UserRepository(localDataSource, remoteDataSource)

 // Lastly, create an instance of LoginViewModel with userRepository

 loginViewModel = LoginViewModel(userRepository)

 }

}

Issues with current approach:

A lot of boilerplate code. Code duplication if we want to

create another instance of LoginViewModel

Dependenies have to be declared in order 23

Managing dependencies with a container

// Container of objects shared across the whole app

class AppContainer {

 // Since you want to expose userRepository out of the container, you need to satisfy

 // its dependencies as you did before

 private val retrofit = Retrofit.Builder()

 .baseUrl("https://example.com")

 .build()

 .create(LoginService::class.java)

 private val remoteDataSource = UserRemoteDataSource(retrofit)

 private val localDataSource = UserLocalDataSource()

 // userRepository is not private; it'll be exposed

 val userRepository = UserRepository(localDataSource, remoteDataSource)

}

// Custom Application class that needs to be specified

// in the AndroidManifest.xml file

class MyApplication : Application() {

 // Instance of AppContainer that will be used by all the Activities of the app

 val appContainer = AppContainer()

}

24

class LoginActivity: Activity() {

 private lateinit var loginViewModel: LoginViewModel

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 // Gets userRepository from the instance of AppContainer in Application

 val appContainer = (application as MyApplication).appContainer

 loginViewModel = LoginViewModel(appContainer.userRepository)

 }

}

Issues with current approach:

Cannot have objects to just live in the scope of different flow

Dependenies have to be declared in order

25

Managing dependencies in application flows

class LoginContainer(val userRepository: UserRepository) {

 val loginData = LoginUserData()

 val loginViewModelFactory = LoginViewModelFactory(userRepository)

}

// AppContainer contains LoginContainer now

class AppContainer {

 ...

 val userRepository = UserRepository(localDataSource, remoteDataSource)

 // LoginContainer will be null when the user is NOT in the login flow

 var loginContainer: LoginContainer? = null

}

26

class LoginActivity: Activity() {

 private lateinit var loginViewModel: LoginViewModel

 private lateinit var loginData: LoginUserData

 private lateinit var appContainer: AppContainer

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 appContainer = (application as MyApplication).appContainer

 // Login flow has started. Populate loginContainer in AppContainer

 appContainer.loginContainer = LoginContainer(appContainer.userRepository)

 loginViewModel = appContainer.loginContainer.loginViewModelFactory.create()

 loginData = appContainer.loginContainer.loginData

 }

 override fun onDestroy() {

 // Login flow is finishing

 // Removing the instance of loginContainer in the AppContainer

 appContainer.loginContainer = null

 super.onDestroy()

 }

}

Issues with current approach:

Have to handle the scope of container ourselves

Dependenies have to be declared in order
27

2.3 Dependency injection with Hilt

28

@Module

@InstallIn(SingletonComponent::class)

object AppModule {

 @Provides

 @Singleton

 fun provideNoteDatabase(app: Application): NoteDatabase {

 return Room.databaseBuilder(

 app,

 NoteDatabase::class.java,

 NoteDatabase.DATABASE_NAME

).build()

 }

 @Provides

 @Singleton

 fun provideNoteRepository(db: NoteDatabase): NoteRepository {

 return NoteRepositoryImpl(db.noteDao)

 }

 @Provides

 @Singleton

 fun provideNoteUseCases(repository: NoteRepository): NoteUseCases {

 return NoteUseCases(

 getNotes = GetNotes(repository),

 deleteNote = DeleteNote(repository),

 addNote = AddNote(repository),

 getNote = GetNote(repository)

)

 }

}

29

@HiltViewModel

class NotesViewModel @Inject constructor(

 private val noteUseCases: NoteUseCases

) : ViewModel() {

30

31

Answers to today's questions

Basic

1. What data are included in a Note?

-> Check Model in Domain Layer

2. What services does this app provide?
-> Check UseCase in Domain Layer

3. Where is the code for "sorting notes"?
-> Check UseCase or ViewModel

4. What user can do to interact with the app on the Main Page?

-> Check UiState in Presentation Layer

32

Advanced

1. Currently the app is using local database for data storage. If
we decide to switch to remote server instead, which parts

should be adjusted and how? (list all)
-> Add DataSource and update Repository

2. If we want to use fake data instead of using real data source
for testing, which parts should be adjusted and how?

-> Add DataSource and add fake Repository

3. If we click the delete button to delete a note but the process
failed (the note is still in database), will the UI show the

note?
-> Yes, as the UI only shows the state that comes from a

single source or truth

33

Discussion

When should we use usecase?

Reduce complexity of UI layer

Avoid duplicatoin

Improve testability

When should we use dependency injection?

Volatile dependencies (不穩定依賴性)

If you want to use Jetpack Compose

34

Conclusion

The goals of following the principle of clean architecture are:

Make it easier to extend the architecture with new features

Make it easier to maintain and test the app

A new team member can easily understand what the project

is doing and can start contribute soon

35

